Frequent subgraph mining algorithms on weighted graphs
نویسنده
چکیده
This thesis describes research work undertaken in the field of graph-based knowledge discovery (or graph mining). The objective of the research is to investigate the benefits that the concept of weighted frequent subgraph mining can offer in the context of the graph model based classification. Weighted subgraphs are graphs where some of the vertexes/edges are considered to be more significant than others. How to discover frequent sub-structures with different strengths is the main issue to be resolved in this thesis. The main approach to addressing this issue is to integrate weight constraints into the frequent subgraph mining process. It is suggested that the utilization of weighted frequent subgraph mining generates more discriminate and significant subgraphs, which will have application in, for example, the classification and clustering of graph data.
منابع مشابه
On the Usefulness of Weight-Based Constraints in Frequent Subgraph Mining
Frequent subgraph mining is an important data-mining technique. In this paper we look at weighted graphs, which are ubiquitous in the real world. The analysis of weights in combination with mining for substructures might yield more precise results. In particular, we study frequent subgraph mining in the presence of weight-based constraints and explain how to integrate them into mining algorithm...
متن کاملWIGM: Discovery of Subgraph Patterns in a Large Weighted Graph
Many research areas have begun representing massive data sets as very large graphs. Thus, graph mining has been an active research area in recent years. Most of the graph mining research focuses on mining unweighted graphs. However, weighted graphs are actually more common. The weight on an edge may represent the likelihood or logarithmic transformation of likelihood of the existence of the edg...
متن کاملThe ParMol Package for Frequent Subgraph Mining
Mining for frequent subgraphs in a graph database has become a popular topic in the last years. Algorithms to solve this problem are used in chemoinformatics to find common molecular fragments in a database of molecules represented as two-dimensional graphs. However, the search process in arbitrary graph structures includes costly graph and subgraph isomorphism tests. In our ParMol package we h...
متن کاملDiscriminative Subgraph Mining for Protein Classification
Protein classification can be performed by representing 3-D protein structures by graphs and then classifying the corresponding graphs. One effective way to classify such graphs is to use frequent subgraph patterns as features; however, the effectiveness of using subgraph patterns in graph classification is often hampered by the large search space of subgraph patterns. In this paper, the author...
متن کاملMining for Unconnected Frequent Graphs with Direct Subgraph Isomorphism Tests
In the paper we propose the algorithm which discovers both connected and unconnected frequent graphs from the graphs set. Our approach is based on depth first search candidate generation and direct execution of subgraph isomorphism test over database. Several search space pruning techniques are also proposed. Due to lack of unconnected graph mining algorithms we compare our algorithm with two g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011